Description: Obsolete version of rexeqbidvv as of 9-Mar-2025. (Contributed by Wolf Lammen, 25-Sep-2024) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqbidvv.1 | |- ( ph -> A = B ) |
|
| raleqbidvv.2 | |- ( ph -> ( ps <-> ch ) ) |
||
| Assertion | rexeqbidvvOLD | |- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidvv.1 | |- ( ph -> A = B ) |
|
| 2 | raleqbidvv.2 | |- ( ph -> ( ps <-> ch ) ) |
|
| 3 | 2 | notbid | |- ( ph -> ( -. ps <-> -. ch ) ) |
| 4 | 1 3 | raleqbidvv | |- ( ph -> ( A. x e. A -. ps <-> A. x e. B -. ch ) ) |
| 5 | ralnex | |- ( A. x e. A -. ps <-> -. E. x e. A ps ) |
|
| 6 | ralnex | |- ( A. x e. B -. ch <-> -. E. x e. B ch ) |
|
| 7 | 4 5 6 | 3bitr3g | |- ( ph -> ( -. E. x e. A ps <-> -. E. x e. B ch ) ) |
| 8 | 7 | con4bid | |- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) ) |