Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexeqbii.1 | |- A = B |
|
rexeqbii.2 | |- ( ps <-> ch ) |
||
Assertion | rexeqbii | |- ( E. x e. A ps <-> E. x e. B ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeqbii.1 | |- A = B |
|
2 | rexeqbii.2 | |- ( ps <-> ch ) |
|
3 | 1 | eleq2i | |- ( x e. A <-> x e. B ) |
4 | 3 2 | anbi12i | |- ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) |
5 | 4 | rexbii2 | |- ( E. x e. A ps <-> E. x e. B ch ) |