Metamath Proof Explorer


Theorem rexeqbii

Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses rexeqbii.1
|- A = B
rexeqbii.2
|- ( ps <-> ch )
Assertion rexeqbii
|- ( E. x e. A ps <-> E. x e. B ch )

Proof

Step Hyp Ref Expression
1 rexeqbii.1
 |-  A = B
2 rexeqbii.2
 |-  ( ps <-> ch )
3 1 eleq2i
 |-  ( x e. A <-> x e. B )
4 3 2 anbi12i
 |-  ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) )
5 4 rexbii2
 |-  ( E. x e. A ps <-> E. x e. B ch )