Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | raleqdv.1 | |- ( ph -> A = B ) |
|
| Assertion | rexeqdv | |- ( ph -> ( E. x e. A ps <-> E. x e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqdv.1 | |- ( ph -> A = B ) |
|
| 2 | rexeq | |- ( A = B -> ( E. x e. A ps <-> E. x e. B ps ) ) |
|
| 3 | 1 2 | syl | |- ( ph -> ( E. x e. A ps <-> E. x e. B ps ) ) |