Metamath Proof Explorer


Theorem rexeqf

Description: Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. See rexeq for a version based on fewer axioms. (Contributed by NM, 9-Oct-2003) (Revised by Andrew Salmon, 11-Jul-2011) (Proof shortened by Wolf Lammen, 9-Mar-2025)

Ref Expression
Hypotheses raleqf.1
|- F/_ x A
raleqf.2
|- F/_ x B
Assertion rexeqf
|- ( A = B -> ( E. x e. A ph <-> E. x e. B ph ) )

Proof

Step Hyp Ref Expression
1 raleqf.1
 |-  F/_ x A
2 raleqf.2
 |-  F/_ x B
3 1 2 raleqf
 |-  ( A = B -> ( A. x e. A -. ph <-> A. x e. B -. ph ) )
4 ralnex
 |-  ( A. x e. A -. ph <-> -. E. x e. A ph )
5 ralnex
 |-  ( A. x e. B -. ph <-> -. E. x e. B ph )
6 3 4 5 3bitr3g
 |-  ( A = B -> ( -. E. x e. A ph <-> -. E. x e. B ph ) )
7 6 con4bid
 |-  ( A = B -> ( E. x e. A ph <-> E. x e. B ph ) )