Metamath Proof Explorer


Theorem rexeqi

Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypothesis raleq1i.1
|- A = B
Assertion rexeqi
|- ( E. x e. A ph <-> E. x e. B ph )

Proof

Step Hyp Ref Expression
1 raleq1i.1
 |-  A = B
2 rexeq
 |-  ( A = B -> ( E. x e. A ph <-> E. x e. B ph ) )
3 1 2 ax-mp
 |-  ( E. x e. A ph <-> E. x e. B ph )