Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | raleq1i.1 | |- A = B |
|
Assertion | rexeqi | |- ( E. x e. A ph <-> E. x e. B ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | |- A = B |
|
2 | rexeq | |- ( A = B -> ( E. x e. A ph <-> E. x e. B ph ) ) |
|
3 | 1 2 | ax-mp | |- ( E. x e. A ph <-> E. x e. B ph ) |