Metamath Proof Explorer


Theorem rexeqtrrdv

Description: Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025)

Ref Expression
Hypotheses rexeqtrrdv.1
|- ( ph -> E. x e. A ps )
rexeqtrrdv.2
|- ( ph -> B = A )
Assertion rexeqtrrdv
|- ( ph -> E. x e. B ps )

Proof

Step Hyp Ref Expression
1 rexeqtrrdv.1
 |-  ( ph -> E. x e. A ps )
2 rexeqtrrdv.2
 |-  ( ph -> B = A )
3 2 rexeqdv
 |-  ( ph -> ( E. x e. B ps <-> E. x e. A ps ) )
4 1 3 mpbird
 |-  ( ph -> E. x e. B ps )