Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | rexex | |- ( E. x e. A ph -> E. x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
2 | exsimpr | |- ( E. x ( x e. A /\ ph ) -> E. x ph ) |
|
3 | 1 2 | sylbi | |- ( E. x e. A ph -> E. x ph ) |