| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reximaOLD.x |  |-  ( x = ( F ` y ) -> ( ph <-> ps ) ) | 
						
							| 2 |  | fvexd |  |-  ( ( ( F Fn A /\ B C_ A ) /\ y e. B ) -> ( F ` y ) e. _V ) | 
						
							| 3 |  | fvelimab |  |-  ( ( F Fn A /\ B C_ A ) -> ( x e. ( F " B ) <-> E. y e. B ( F ` y ) = x ) ) | 
						
							| 4 |  | eqcom |  |-  ( ( F ` y ) = x <-> x = ( F ` y ) ) | 
						
							| 5 | 4 | rexbii |  |-  ( E. y e. B ( F ` y ) = x <-> E. y e. B x = ( F ` y ) ) | 
						
							| 6 | 3 5 | bitrdi |  |-  ( ( F Fn A /\ B C_ A ) -> ( x e. ( F " B ) <-> E. y e. B x = ( F ` y ) ) ) | 
						
							| 7 | 1 | adantl |  |-  ( ( ( F Fn A /\ B C_ A ) /\ x = ( F ` y ) ) -> ( ph <-> ps ) ) | 
						
							| 8 | 2 6 7 | rexxfr2d |  |-  ( ( F Fn A /\ B C_ A ) -> ( E. x e. ( F " B ) ph <-> E. y e. B ps ) ) |