Metamath Proof Explorer


Theorem reximdd

Description: Deduction from Theorem 19.22 of Margaris p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses reximdd.1
|- F/ x ph
reximdd.2
|- ( ( ph /\ x e. A /\ ps ) -> ch )
reximdd.3
|- ( ph -> E. x e. A ps )
Assertion reximdd
|- ( ph -> E. x e. A ch )

Proof

Step Hyp Ref Expression
1 reximdd.1
 |-  F/ x ph
2 reximdd.2
 |-  ( ( ph /\ x e. A /\ ps ) -> ch )
3 reximdd.3
 |-  ( ph -> E. x e. A ps )
4 2 3exp
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
5 1 4 reximdai
 |-  ( ph -> ( E. x e. A ps -> E. x e. A ch ) )
6 3 5 mpd
 |-  ( ph -> E. x e. A ch )