Metamath Proof Explorer


Theorem reximddv

Description: Deduction from Theorem 19.22 of Margaris p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses reximddva.1
|- ( ( ph /\ ( x e. A /\ ps ) ) -> ch )
reximddva.2
|- ( ph -> E. x e. A ps )
Assertion reximddv
|- ( ph -> E. x e. A ch )

Proof

Step Hyp Ref Expression
1 reximddva.1
 |-  ( ( ph /\ ( x e. A /\ ps ) ) -> ch )
2 reximddva.2
 |-  ( ph -> E. x e. A ps )
3 1 expr
 |-  ( ( ph /\ x e. A ) -> ( ps -> ch ) )
4 3 reximdva
 |-  ( ph -> ( E. x e. A ps -> E. x e. A ch ) )
5 2 4 mpd
 |-  ( ph -> E. x e. A ch )