Metamath Proof Explorer


Theorem reximdv

Description: Deduction from Theorem 19.22 of Margaris p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998)

Ref Expression
Hypothesis reximdv.1
|- ( ph -> ( ps -> ch ) )
Assertion reximdv
|- ( ph -> ( E. x e. A ps -> E. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 reximdv.1
 |-  ( ph -> ( ps -> ch ) )
2 1 a1d
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
3 2 reximdvai
 |-  ( ph -> ( E. x e. A ps -> E. x e. A ch ) )