Metamath Proof Explorer


Theorem reximdv2

Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by NM, 17-Sep-2003)

Ref Expression
Hypothesis reximdv2.1
|- ( ph -> ( ( x e. A /\ ps ) -> ( x e. B /\ ch ) ) )
Assertion reximdv2
|- ( ph -> ( E. x e. A ps -> E. x e. B ch ) )

Proof

Step Hyp Ref Expression
1 reximdv2.1
 |-  ( ph -> ( ( x e. A /\ ps ) -> ( x e. B /\ ch ) ) )
2 1 eximdv
 |-  ( ph -> ( E. x ( x e. A /\ ps ) -> E. x ( x e. B /\ ch ) ) )
3 df-rex
 |-  ( E. x e. A ps <-> E. x ( x e. A /\ ps ) )
4 df-rex
 |-  ( E. x e. B ch <-> E. x ( x e. B /\ ch ) )
5 2 3 4 3imtr4g
 |-  ( ph -> ( E. x e. A ps -> E. x e. B ch ) )