Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by NM, 22-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralimdva.1 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
|
| Assertion | reximdva | |- ( ph -> ( E. x e. A ps -> E. x e. A ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdva.1 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
|
| 2 | 1 | ex | |- ( ph -> ( x e. A -> ( ps -> ch ) ) ) |
| 3 | 2 | reximdvai | |- ( ph -> ( E. x e. A ps -> E. x e. A ch ) ) |