Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by AV, 5-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reximdvva.1 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps -> ch ) ) |
|
Assertion | reximdvva | |- ( ph -> ( E. x e. A E. y e. B ps -> E. x e. A E. y e. B ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdvva.1 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps -> ch ) ) |
|
2 | 1 | anassrs | |- ( ( ( ph /\ x e. A ) /\ y e. B ) -> ( ps -> ch ) ) |
3 | 2 | reximdva | |- ( ( ph /\ x e. A ) -> ( E. y e. B ps -> E. y e. B ch ) ) |
4 | 3 | reximdva | |- ( ph -> ( E. x e. A E. y e. B ps -> E. x e. A E. y e. B ch ) ) |