Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by NM, 8-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reximi2.1 | |- ( ( x e. A /\ ph ) -> ( x e. B /\ ps ) ) |
|
Assertion | reximi2 | |- ( E. x e. A ph -> E. x e. B ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi2.1 | |- ( ( x e. A /\ ph ) -> ( x e. B /\ ps ) ) |
|
2 | 1 | eximi | |- ( E. x ( x e. A /\ ph ) -> E. x ( x e. B /\ ps ) ) |
3 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
4 | df-rex | |- ( E. x e. B ps <-> E. x ( x e. B /\ ps ) ) |
|
5 | 2 3 4 | 3imtr4i | |- ( E. x e. A ph -> E. x e. B ps ) |