Metamath Proof Explorer


Theorem reximi2

Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by NM, 8-Nov-2004)

Ref Expression
Hypothesis reximi2.1
|- ( ( x e. A /\ ph ) -> ( x e. B /\ ps ) )
Assertion reximi2
|- ( E. x e. A ph -> E. x e. B ps )

Proof

Step Hyp Ref Expression
1 reximi2.1
 |-  ( ( x e. A /\ ph ) -> ( x e. B /\ ps ) )
2 1 eximi
 |-  ( E. x ( x e. A /\ ph ) -> E. x ( x e. B /\ ps ) )
3 df-rex
 |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) )
4 df-rex
 |-  ( E. x e. B ps <-> E. x ( x e. B /\ ps ) )
5 2 3 4 3imtr4i
 |-  ( E. x e. A ph -> E. x e. B ps )