Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997) (Proof shortened by Wolf Lammen, 31-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reximia.1 | |- ( x e. A -> ( ph -> ps ) ) |
|
Assertion | reximia | |- ( E. x e. A ph -> E. x e. A ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximia.1 | |- ( x e. A -> ( ph -> ps ) ) |
|
2 | 1 | imdistani | |- ( ( x e. A /\ ph ) -> ( x e. A /\ ps ) ) |
3 | 2 | reximi2 | |- ( E. x e. A ph -> E. x e. A ps ) |