Metamath Proof Explorer


Theorem reximia

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997) (Proof shortened by Wolf Lammen, 31-Oct-2024)

Ref Expression
Hypothesis reximia.1
|- ( x e. A -> ( ph -> ps ) )
Assertion reximia
|- ( E. x e. A ph -> E. x e. A ps )

Proof

Step Hyp Ref Expression
1 reximia.1
 |-  ( x e. A -> ( ph -> ps ) )
2 1 imdistani
 |-  ( ( x e. A /\ ph ) -> ( x e. A /\ ps ) )
3 2 reximi2
 |-  ( E. x e. A ph -> E. x e. A ps )