Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997) (Proof shortened by Wolf Lammen, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralimia.1 | |- ( x e. A -> ( ph -> ps ) ) |
|
| Assertion | reximia | |- ( E. x e. A ph -> E. x e. A ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | |- ( x e. A -> ( ph -> ps ) ) |
|
| 2 | 1 | imdistani | |- ( ( x e. A /\ ph ) -> ( x e. A /\ ps ) ) |
| 3 | 2 | reximi2 | |- ( E. x e. A ph -> E. x e. A ps ) |