Metamath Proof Explorer


Theorem reximiaOLD

Description: Obsolete version of reximia as of 31-Oct-2024. (Contributed by NM, 10-Feb-1997) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis reximia.1
|- ( x e. A -> ( ph -> ps ) )
Assertion reximiaOLD
|- ( E. x e. A ph -> E. x e. A ps )

Proof

Step Hyp Ref Expression
1 reximia.1
 |-  ( x e. A -> ( ph -> ps ) )
2 rexim
 |-  ( A. x e. A ( ph -> ps ) -> ( E. x e. A ph -> E. x e. A ps ) )
3 2 1 mprg
 |-  ( E. x e. A ph -> E. x e. A ps )