Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies A C_ B ), deduction form. (Contributed by AV, 21-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reximssdv.1 | |- ( ph -> E. x e. B ps ) |
|
reximssdv.2 | |- ( ( ph /\ ( x e. B /\ ps ) ) -> x e. A ) |
||
reximssdv.3 | |- ( ( ph /\ ( x e. B /\ ps ) ) -> ch ) |
||
Assertion | reximssdv | |- ( ph -> E. x e. A ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximssdv.1 | |- ( ph -> E. x e. B ps ) |
|
2 | reximssdv.2 | |- ( ( ph /\ ( x e. B /\ ps ) ) -> x e. A ) |
|
3 | reximssdv.3 | |- ( ( ph /\ ( x e. B /\ ps ) ) -> ch ) |
|
4 | 2 3 | jca | |- ( ( ph /\ ( x e. B /\ ps ) ) -> ( x e. A /\ ch ) ) |
5 | 4 | ex | |- ( ph -> ( ( x e. B /\ ps ) -> ( x e. A /\ ch ) ) ) |
6 | 5 | reximdv2 | |- ( ph -> ( E. x e. B ps -> E. x e. A ch ) ) |
7 | 1 6 | mpd | |- ( ph -> E. x e. A ch ) |