Metamath Proof Explorer


Theorem reximssdv

Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies A C_ B ), deduction form. (Contributed by AV, 21-Aug-2022)

Ref Expression
Hypotheses reximssdv.1
|- ( ph -> E. x e. B ps )
reximssdv.2
|- ( ( ph /\ ( x e. B /\ ps ) ) -> x e. A )
reximssdv.3
|- ( ( ph /\ ( x e. B /\ ps ) ) -> ch )
Assertion reximssdv
|- ( ph -> E. x e. A ch )

Proof

Step Hyp Ref Expression
1 reximssdv.1
 |-  ( ph -> E. x e. B ps )
2 reximssdv.2
 |-  ( ( ph /\ ( x e. B /\ ps ) ) -> x e. A )
3 reximssdv.3
 |-  ( ( ph /\ ( x e. B /\ ps ) ) -> ch )
4 2 3 jca
 |-  ( ( ph /\ ( x e. B /\ ps ) ) -> ( x e. A /\ ch ) )
5 4 ex
 |-  ( ph -> ( ( x e. B /\ ps ) -> ( x e. A /\ ch ) ) )
6 5 reximdv2
 |-  ( ph -> ( E. x e. B ps -> E. x e. A ch ) )
7 1 6 mpd
 |-  ( ph -> E. x e. A ch )