Description: Deduction form of rexlimd . For a version based on fewer axioms see rexlimdv . (Contributed by NM, 27-May-1998) (Proof shortened by Andrew Salmon, 30-May-2011) (Proof shortened by Wolf Lammen, 14-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexlimd.1 | |- F/ x ph |
|
| rexlimd.2 | |- F/ x ch |
||
| rexlimd.3 | |- ( ph -> ( x e. A -> ( ps -> ch ) ) ) |
||
| Assertion | rexlimd | |- ( ph -> ( E. x e. A ps -> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimd.1 | |- F/ x ph |
|
| 2 | rexlimd.2 | |- F/ x ch |
|
| 3 | rexlimd.3 | |- ( ph -> ( x e. A -> ( ps -> ch ) ) ) |
|
| 4 | 2 | a1i | |- ( ph -> F/ x ch ) |
| 5 | 1 4 3 | rexlimd2 | |- ( ph -> ( E. x e. A ps -> ch ) ) |