Metamath Proof Explorer


Theorem rexlimd3

Description: * Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses rexlimd3.1
|- F/ x ph
rexlimd3.2
|- F/ x ch
rexlimd3.3
|- ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
Assertion rexlimd3
|- ( ph -> ( E. x e. A ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rexlimd3.1
 |-  F/ x ph
2 rexlimd3.2
 |-  F/ x ch
3 rexlimd3.3
 |-  ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
4 3 exp31
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
5 1 2 4 rexlimd
 |-  ( ph -> ( E. x e. A ps -> ch ) )