Metamath Proof Explorer


Theorem rexlimdva

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by NM, 20-Jan-2007)

Ref Expression
Hypothesis rexlimdva.1
|- ( ( ph /\ x e. A ) -> ( ps -> ch ) )
Assertion rexlimdva
|- ( ph -> ( E. x e. A ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rexlimdva.1
 |-  ( ( ph /\ x e. A ) -> ( ps -> ch ) )
2 1 ex
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
3 2 rexlimdv
 |-  ( ph -> ( E. x e. A ps -> ch ) )