Metamath Proof Explorer


Theorem rexlimdva2

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis rexlimdva2.1
|- ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
Assertion rexlimdva2
|- ( ph -> ( E. x e. A ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rexlimdva2.1
 |-  ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
2 1 exp31
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
3 2 rexlimdv
 |-  ( ph -> ( E. x e. A ps -> ch ) )