Metamath Proof Explorer


Theorem rexlimdvw

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014)

Ref Expression
Hypothesis rexlimdvw.1
|- ( ph -> ( ps -> ch ) )
Assertion rexlimdvw
|- ( ph -> ( E. x e. A ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rexlimdvw.1
 |-  ( ph -> ( ps -> ch ) )
2 1 a1d
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
3 2 rexlimdv
 |-  ( ph -> ( E. x e. A ps -> ch ) )