Metamath Proof Explorer


Theorem rexlimiva

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006)

Ref Expression
Hypothesis rexlimiva.1
|- ( ( x e. A /\ ph ) -> ps )
Assertion rexlimiva
|- ( E. x e. A ph -> ps )

Proof

Step Hyp Ref Expression
1 rexlimiva.1
 |-  ( ( x e. A /\ ph ) -> ps )
2 1 ex
 |-  ( x e. A -> ( ph -> ps ) )
3 2 rexlimiv
 |-  ( E. x e. A ph -> ps )