Metamath Proof Explorer


Theorem rexlimivv

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004)

Ref Expression
Hypothesis rexlimivv.1
|- ( ( x e. A /\ y e. B ) -> ( ph -> ps ) )
Assertion rexlimivv
|- ( E. x e. A E. y e. B ph -> ps )

Proof

Step Hyp Ref Expression
1 rexlimivv.1
 |-  ( ( x e. A /\ y e. B ) -> ( ph -> ps ) )
2 1 rexlimdva
 |-  ( x e. A -> ( E. y e. B ph -> ps ) )
3 2 rexlimiv
 |-  ( E. x e. A E. y e. B ph -> ps )