Step |
Hyp |
Ref |
Expression |
1 |
|
renepnf |
|- ( A e. RR -> A =/= +oo ) |
2 |
1
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> A =/= +oo ) |
3 |
2
|
necon2bi |
|- ( A = +oo -> -. ( A e. RR /\ B e. RR ) ) |
4 |
3
|
adantl |
|- ( ( 0 < B /\ A = +oo ) -> -. ( A e. RR /\ B e. RR ) ) |
5 |
|
renemnf |
|- ( A e. RR -> A =/= -oo ) |
6 |
5
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> A =/= -oo ) |
7 |
6
|
necon2bi |
|- ( A = -oo -> -. ( A e. RR /\ B e. RR ) ) |
8 |
7
|
adantl |
|- ( ( B < 0 /\ A = -oo ) -> -. ( A e. RR /\ B e. RR ) ) |
9 |
4 8
|
jaoi |
|- ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) -> -. ( A e. RR /\ B e. RR ) ) |
10 |
|
renepnf |
|- ( B e. RR -> B =/= +oo ) |
11 |
10
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> B =/= +oo ) |
12 |
11
|
necon2bi |
|- ( B = +oo -> -. ( A e. RR /\ B e. RR ) ) |
13 |
12
|
adantl |
|- ( ( 0 < A /\ B = +oo ) -> -. ( A e. RR /\ B e. RR ) ) |
14 |
|
renemnf |
|- ( B e. RR -> B =/= -oo ) |
15 |
14
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> B =/= -oo ) |
16 |
15
|
necon2bi |
|- ( B = -oo -> -. ( A e. RR /\ B e. RR ) ) |
17 |
16
|
adantl |
|- ( ( A < 0 /\ B = -oo ) -> -. ( A e. RR /\ B e. RR ) ) |
18 |
13 17
|
jaoi |
|- ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) -> -. ( A e. RR /\ B e. RR ) ) |
19 |
9 18
|
jaoi |
|- ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( A e. RR /\ B e. RR ) ) |
20 |
19
|
con2i |
|- ( ( A e. RR /\ B e. RR ) -> -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) |
21 |
20
|
iffalsed |
|- ( ( A e. RR /\ B e. RR ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) |
22 |
7
|
adantl |
|- ( ( 0 < B /\ A = -oo ) -> -. ( A e. RR /\ B e. RR ) ) |
23 |
3
|
adantl |
|- ( ( B < 0 /\ A = +oo ) -> -. ( A e. RR /\ B e. RR ) ) |
24 |
22 23
|
jaoi |
|- ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) -> -. ( A e. RR /\ B e. RR ) ) |
25 |
16
|
adantl |
|- ( ( 0 < A /\ B = -oo ) -> -. ( A e. RR /\ B e. RR ) ) |
26 |
12
|
adantl |
|- ( ( A < 0 /\ B = +oo ) -> -. ( A e. RR /\ B e. RR ) ) |
27 |
25 26
|
jaoi |
|- ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) -> -. ( A e. RR /\ B e. RR ) ) |
28 |
24 27
|
jaoi |
|- ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) -> -. ( A e. RR /\ B e. RR ) ) |
29 |
28
|
con2i |
|- ( ( A e. RR /\ B e. RR ) -> -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) |
30 |
29
|
iffalsed |
|- ( ( A e. RR /\ B e. RR ) -> if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) = ( A x. B ) ) |
31 |
21 30
|
eqtrd |
|- ( ( A e. RR /\ B e. RR ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = ( A x. B ) ) |
32 |
31
|
ifeq2d |
|- ( ( A e. RR /\ B e. RR ) -> if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , ( A x. B ) ) ) |
33 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
34 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
35 |
|
xmulval |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
36 |
33 34 35
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
37 |
|
ifid |
|- if ( ( A = 0 \/ B = 0 ) , ( A x. B ) , ( A x. B ) ) = ( A x. B ) |
38 |
|
oveq1 |
|- ( A = 0 -> ( A x. B ) = ( 0 x. B ) ) |
39 |
|
mul02lem2 |
|- ( B e. RR -> ( 0 x. B ) = 0 ) |
40 |
39
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 x. B ) = 0 ) |
41 |
38 40
|
sylan9eqr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = 0 ) -> ( A x. B ) = 0 ) |
42 |
|
oveq2 |
|- ( B = 0 -> ( A x. B ) = ( A x. 0 ) ) |
43 |
|
recn |
|- ( A e. RR -> A e. CC ) |
44 |
43
|
mul01d |
|- ( A e. RR -> ( A x. 0 ) = 0 ) |
45 |
44
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. 0 ) = 0 ) |
46 |
42 45
|
sylan9eqr |
|- ( ( ( A e. RR /\ B e. RR ) /\ B = 0 ) -> ( A x. B ) = 0 ) |
47 |
41 46
|
jaodan |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A = 0 \/ B = 0 ) ) -> ( A x. B ) = 0 ) |
48 |
47
|
ifeq1da |
|- ( ( A e. RR /\ B e. RR ) -> if ( ( A = 0 \/ B = 0 ) , ( A x. B ) , ( A x. B ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , ( A x. B ) ) ) |
49 |
37 48
|
eqtr3id |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) = if ( ( A = 0 \/ B = 0 ) , 0 , ( A x. B ) ) ) |
50 |
32 36 49
|
3eqtr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) = ( A x. B ) ) |