Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 2-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | rexn0 | |- ( E. x e. A ph -> A =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 | |- ( E. x e. A ph <-> -. A. x e. A -. ph ) |
|
2 | rzal | |- ( A = (/) -> A. x e. A -. ph ) |
|
3 | 2 | con3i | |- ( -. A. x e. A -. ph -> -. A = (/) ) |
4 | 1 3 | sylbi | |- ( E. x e. A ph -> -. A = (/) ) |
5 | 4 | neqned | |- ( E. x e. A ph -> A =/= (/) ) |