Metamath Proof Explorer


Theorem rexn0

Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 2-Sep-2024)

Ref Expression
Assertion rexn0
|- ( E. x e. A ph -> A =/= (/) )

Proof

Step Hyp Ref Expression
1 dfrex2
 |-  ( E. x e. A ph <-> -. A. x e. A -. ph )
2 rzal
 |-  ( A = (/) -> A. x e. A -. ph )
3 2 con3i
 |-  ( -. A. x e. A -. ph -> -. A = (/) )
4 1 3 sylbi
 |-  ( E. x e. A ph -> -. A = (/) )
5 4 neqned
 |-  ( E. x e. A ph -> A =/= (/) )