Metamath Proof Explorer


Theorem rexnal

Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997) (Proof shortened by Wolf Lammen, 9-Dec-2019)

Ref Expression
Assertion rexnal
|- ( E. x e. A -. ph <-> -. A. x e. A ph )

Proof

Step Hyp Ref Expression
1 dfral2
 |-  ( A. x e. A ph <-> -. E. x e. A -. ph )
2 1 con2bii
 |-  ( E. x e. A -. ph <-> -. A. x e. A ph )