Metamath Proof Explorer


Theorem rexnegd

Description: Minus a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis rexnegd.1
|- ( ph -> A e. RR )
Assertion rexnegd
|- ( ph -> -e A = -u A )

Proof

Step Hyp Ref Expression
1 rexnegd.1
 |-  ( ph -> A e. RR )
2 rexneg
 |-  ( A e. RR -> -e A = -u A )
3 1 2 syl
 |-  ( ph -> -e A = -u A )