| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpnnen |
|- RR ~~ ~P NN |
| 2 |
|
nnenom |
|- NN ~~ _om |
| 3 |
|
pwen |
|- ( NN ~~ _om -> ~P NN ~~ ~P _om ) |
| 4 |
2 3
|
ax-mp |
|- ~P NN ~~ ~P _om |
| 5 |
1 4
|
entri |
|- RR ~~ ~P _om |
| 6 |
|
omex |
|- _om e. _V |
| 7 |
6
|
pw2en |
|- ~P _om ~~ ( 2o ^m _om ) |
| 8 |
5 7
|
entri |
|- RR ~~ ( 2o ^m _om ) |
| 9 |
|
xpen |
|- ( ( RR ~~ ( 2o ^m _om ) /\ RR ~~ ( 2o ^m _om ) ) -> ( RR X. RR ) ~~ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) |
| 10 |
8 8 9
|
mp2an |
|- ( RR X. RR ) ~~ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) |
| 11 |
|
2onn |
|- 2o e. _om |
| 12 |
11
|
elexi |
|- 2o e. _V |
| 13 |
12 12 6
|
xpmapen |
|- ( ( 2o X. 2o ) ^m _om ) ~~ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) |
| 14 |
13
|
ensymi |
|- ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~~ ( ( 2o X. 2o ) ^m _om ) |
| 15 |
|
ssid |
|- 2o C_ 2o |
| 16 |
|
ssnnfi |
|- ( ( 2o e. _om /\ 2o C_ 2o ) -> 2o e. Fin ) |
| 17 |
11 15 16
|
mp2an |
|- 2o e. Fin |
| 18 |
|
xpfi |
|- ( ( 2o e. Fin /\ 2o e. Fin ) -> ( 2o X. 2o ) e. Fin ) |
| 19 |
17 17 18
|
mp2an |
|- ( 2o X. 2o ) e. Fin |
| 20 |
|
isfinite |
|- ( ( 2o X. 2o ) e. Fin <-> ( 2o X. 2o ) ~< _om ) |
| 21 |
19 20
|
mpbi |
|- ( 2o X. 2o ) ~< _om |
| 22 |
6
|
canth2 |
|- _om ~< ~P _om |
| 23 |
|
sdomtr |
|- ( ( ( 2o X. 2o ) ~< _om /\ _om ~< ~P _om ) -> ( 2o X. 2o ) ~< ~P _om ) |
| 24 |
21 22 23
|
mp2an |
|- ( 2o X. 2o ) ~< ~P _om |
| 25 |
|
sdomdom |
|- ( ( 2o X. 2o ) ~< ~P _om -> ( 2o X. 2o ) ~<_ ~P _om ) |
| 26 |
24 25
|
ax-mp |
|- ( 2o X. 2o ) ~<_ ~P _om |
| 27 |
|
domentr |
|- ( ( ( 2o X. 2o ) ~<_ ~P _om /\ ~P _om ~~ ( 2o ^m _om ) ) -> ( 2o X. 2o ) ~<_ ( 2o ^m _om ) ) |
| 28 |
26 7 27
|
mp2an |
|- ( 2o X. 2o ) ~<_ ( 2o ^m _om ) |
| 29 |
|
mapdom1 |
|- ( ( 2o X. 2o ) ~<_ ( 2o ^m _om ) -> ( ( 2o X. 2o ) ^m _om ) ~<_ ( ( 2o ^m _om ) ^m _om ) ) |
| 30 |
28 29
|
ax-mp |
|- ( ( 2o X. 2o ) ^m _om ) ~<_ ( ( 2o ^m _om ) ^m _om ) |
| 31 |
|
mapxpen |
|- ( ( 2o e. _om /\ _om e. _V /\ _om e. _V ) -> ( ( 2o ^m _om ) ^m _om ) ~~ ( 2o ^m ( _om X. _om ) ) ) |
| 32 |
11 6 6 31
|
mp3an |
|- ( ( 2o ^m _om ) ^m _om ) ~~ ( 2o ^m ( _om X. _om ) ) |
| 33 |
12
|
enref |
|- 2o ~~ 2o |
| 34 |
|
xpomen |
|- ( _om X. _om ) ~~ _om |
| 35 |
|
mapen |
|- ( ( 2o ~~ 2o /\ ( _om X. _om ) ~~ _om ) -> ( 2o ^m ( _om X. _om ) ) ~~ ( 2o ^m _om ) ) |
| 36 |
33 34 35
|
mp2an |
|- ( 2o ^m ( _om X. _om ) ) ~~ ( 2o ^m _om ) |
| 37 |
32 36
|
entri |
|- ( ( 2o ^m _om ) ^m _om ) ~~ ( 2o ^m _om ) |
| 38 |
|
domentr |
|- ( ( ( ( 2o X. 2o ) ^m _om ) ~<_ ( ( 2o ^m _om ) ^m _om ) /\ ( ( 2o ^m _om ) ^m _om ) ~~ ( 2o ^m _om ) ) -> ( ( 2o X. 2o ) ^m _om ) ~<_ ( 2o ^m _om ) ) |
| 39 |
30 37 38
|
mp2an |
|- ( ( 2o X. 2o ) ^m _om ) ~<_ ( 2o ^m _om ) |
| 40 |
|
endomtr |
|- ( ( ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~~ ( ( 2o X. 2o ) ^m _om ) /\ ( ( 2o X. 2o ) ^m _om ) ~<_ ( 2o ^m _om ) ) -> ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~<_ ( 2o ^m _om ) ) |
| 41 |
14 39 40
|
mp2an |
|- ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~<_ ( 2o ^m _om ) |
| 42 |
|
ovex |
|- ( 2o ^m _om ) e. _V |
| 43 |
|
0ex |
|- (/) e. _V |
| 44 |
42 43
|
xpsnen |
|- ( ( 2o ^m _om ) X. { (/) } ) ~~ ( 2o ^m _om ) |
| 45 |
44
|
ensymi |
|- ( 2o ^m _om ) ~~ ( ( 2o ^m _om ) X. { (/) } ) |
| 46 |
|
snfi |
|- { (/) } e. Fin |
| 47 |
|
isfinite |
|- ( { (/) } e. Fin <-> { (/) } ~< _om ) |
| 48 |
46 47
|
mpbi |
|- { (/) } ~< _om |
| 49 |
|
sdomtr |
|- ( ( { (/) } ~< _om /\ _om ~< ~P _om ) -> { (/) } ~< ~P _om ) |
| 50 |
48 22 49
|
mp2an |
|- { (/) } ~< ~P _om |
| 51 |
|
sdomdom |
|- ( { (/) } ~< ~P _om -> { (/) } ~<_ ~P _om ) |
| 52 |
50 51
|
ax-mp |
|- { (/) } ~<_ ~P _om |
| 53 |
|
domentr |
|- ( ( { (/) } ~<_ ~P _om /\ ~P _om ~~ ( 2o ^m _om ) ) -> { (/) } ~<_ ( 2o ^m _om ) ) |
| 54 |
52 7 53
|
mp2an |
|- { (/) } ~<_ ( 2o ^m _om ) |
| 55 |
42
|
xpdom2 |
|- ( { (/) } ~<_ ( 2o ^m _om ) -> ( ( 2o ^m _om ) X. { (/) } ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) |
| 56 |
54 55
|
ax-mp |
|- ( ( 2o ^m _om ) X. { (/) } ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) |
| 57 |
|
endomtr |
|- ( ( ( 2o ^m _om ) ~~ ( ( 2o ^m _om ) X. { (/) } ) /\ ( ( 2o ^m _om ) X. { (/) } ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) -> ( 2o ^m _om ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) |
| 58 |
45 56 57
|
mp2an |
|- ( 2o ^m _om ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) |
| 59 |
|
sbth |
|- ( ( ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~<_ ( 2o ^m _om ) /\ ( 2o ^m _om ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) -> ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~~ ( 2o ^m _om ) ) |
| 60 |
41 58 59
|
mp2an |
|- ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~~ ( 2o ^m _om ) |
| 61 |
10 60
|
entri |
|- ( RR X. RR ) ~~ ( 2o ^m _om ) |
| 62 |
61 8
|
entr4i |
|- ( RR X. RR ) ~~ RR |