Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen |
|- RR ~~ ~P NN |
2 |
|
nnenom |
|- NN ~~ _om |
3 |
|
pwen |
|- ( NN ~~ _om -> ~P NN ~~ ~P _om ) |
4 |
2 3
|
ax-mp |
|- ~P NN ~~ ~P _om |
5 |
1 4
|
entri |
|- RR ~~ ~P _om |
6 |
|
omex |
|- _om e. _V |
7 |
6
|
pw2en |
|- ~P _om ~~ ( 2o ^m _om ) |
8 |
5 7
|
entri |
|- RR ~~ ( 2o ^m _om ) |
9 |
|
xpen |
|- ( ( RR ~~ ( 2o ^m _om ) /\ RR ~~ ( 2o ^m _om ) ) -> ( RR X. RR ) ~~ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) |
10 |
8 8 9
|
mp2an |
|- ( RR X. RR ) ~~ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) |
11 |
|
2onn |
|- 2o e. _om |
12 |
11
|
elexi |
|- 2o e. _V |
13 |
12 12 6
|
xpmapen |
|- ( ( 2o X. 2o ) ^m _om ) ~~ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) |
14 |
13
|
ensymi |
|- ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~~ ( ( 2o X. 2o ) ^m _om ) |
15 |
|
ssid |
|- 2o C_ 2o |
16 |
|
ssnnfi |
|- ( ( 2o e. _om /\ 2o C_ 2o ) -> 2o e. Fin ) |
17 |
11 15 16
|
mp2an |
|- 2o e. Fin |
18 |
|
xpfi |
|- ( ( 2o e. Fin /\ 2o e. Fin ) -> ( 2o X. 2o ) e. Fin ) |
19 |
17 17 18
|
mp2an |
|- ( 2o X. 2o ) e. Fin |
20 |
|
isfinite |
|- ( ( 2o X. 2o ) e. Fin <-> ( 2o X. 2o ) ~< _om ) |
21 |
19 20
|
mpbi |
|- ( 2o X. 2o ) ~< _om |
22 |
6
|
canth2 |
|- _om ~< ~P _om |
23 |
|
sdomtr |
|- ( ( ( 2o X. 2o ) ~< _om /\ _om ~< ~P _om ) -> ( 2o X. 2o ) ~< ~P _om ) |
24 |
21 22 23
|
mp2an |
|- ( 2o X. 2o ) ~< ~P _om |
25 |
|
sdomdom |
|- ( ( 2o X. 2o ) ~< ~P _om -> ( 2o X. 2o ) ~<_ ~P _om ) |
26 |
24 25
|
ax-mp |
|- ( 2o X. 2o ) ~<_ ~P _om |
27 |
|
domentr |
|- ( ( ( 2o X. 2o ) ~<_ ~P _om /\ ~P _om ~~ ( 2o ^m _om ) ) -> ( 2o X. 2o ) ~<_ ( 2o ^m _om ) ) |
28 |
26 7 27
|
mp2an |
|- ( 2o X. 2o ) ~<_ ( 2o ^m _om ) |
29 |
|
mapdom1 |
|- ( ( 2o X. 2o ) ~<_ ( 2o ^m _om ) -> ( ( 2o X. 2o ) ^m _om ) ~<_ ( ( 2o ^m _om ) ^m _om ) ) |
30 |
28 29
|
ax-mp |
|- ( ( 2o X. 2o ) ^m _om ) ~<_ ( ( 2o ^m _om ) ^m _om ) |
31 |
|
mapxpen |
|- ( ( 2o e. _om /\ _om e. _V /\ _om e. _V ) -> ( ( 2o ^m _om ) ^m _om ) ~~ ( 2o ^m ( _om X. _om ) ) ) |
32 |
11 6 6 31
|
mp3an |
|- ( ( 2o ^m _om ) ^m _om ) ~~ ( 2o ^m ( _om X. _om ) ) |
33 |
12
|
enref |
|- 2o ~~ 2o |
34 |
|
xpomen |
|- ( _om X. _om ) ~~ _om |
35 |
|
mapen |
|- ( ( 2o ~~ 2o /\ ( _om X. _om ) ~~ _om ) -> ( 2o ^m ( _om X. _om ) ) ~~ ( 2o ^m _om ) ) |
36 |
33 34 35
|
mp2an |
|- ( 2o ^m ( _om X. _om ) ) ~~ ( 2o ^m _om ) |
37 |
32 36
|
entri |
|- ( ( 2o ^m _om ) ^m _om ) ~~ ( 2o ^m _om ) |
38 |
|
domentr |
|- ( ( ( ( 2o X. 2o ) ^m _om ) ~<_ ( ( 2o ^m _om ) ^m _om ) /\ ( ( 2o ^m _om ) ^m _om ) ~~ ( 2o ^m _om ) ) -> ( ( 2o X. 2o ) ^m _om ) ~<_ ( 2o ^m _om ) ) |
39 |
30 37 38
|
mp2an |
|- ( ( 2o X. 2o ) ^m _om ) ~<_ ( 2o ^m _om ) |
40 |
|
endomtr |
|- ( ( ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~~ ( ( 2o X. 2o ) ^m _om ) /\ ( ( 2o X. 2o ) ^m _om ) ~<_ ( 2o ^m _om ) ) -> ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~<_ ( 2o ^m _om ) ) |
41 |
14 39 40
|
mp2an |
|- ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~<_ ( 2o ^m _om ) |
42 |
|
ovex |
|- ( 2o ^m _om ) e. _V |
43 |
|
0ex |
|- (/) e. _V |
44 |
42 43
|
xpsnen |
|- ( ( 2o ^m _om ) X. { (/) } ) ~~ ( 2o ^m _om ) |
45 |
44
|
ensymi |
|- ( 2o ^m _om ) ~~ ( ( 2o ^m _om ) X. { (/) } ) |
46 |
|
snfi |
|- { (/) } e. Fin |
47 |
|
isfinite |
|- ( { (/) } e. Fin <-> { (/) } ~< _om ) |
48 |
46 47
|
mpbi |
|- { (/) } ~< _om |
49 |
|
sdomtr |
|- ( ( { (/) } ~< _om /\ _om ~< ~P _om ) -> { (/) } ~< ~P _om ) |
50 |
48 22 49
|
mp2an |
|- { (/) } ~< ~P _om |
51 |
|
sdomdom |
|- ( { (/) } ~< ~P _om -> { (/) } ~<_ ~P _om ) |
52 |
50 51
|
ax-mp |
|- { (/) } ~<_ ~P _om |
53 |
|
domentr |
|- ( ( { (/) } ~<_ ~P _om /\ ~P _om ~~ ( 2o ^m _om ) ) -> { (/) } ~<_ ( 2o ^m _om ) ) |
54 |
52 7 53
|
mp2an |
|- { (/) } ~<_ ( 2o ^m _om ) |
55 |
42
|
xpdom2 |
|- ( { (/) } ~<_ ( 2o ^m _om ) -> ( ( 2o ^m _om ) X. { (/) } ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) |
56 |
54 55
|
ax-mp |
|- ( ( 2o ^m _om ) X. { (/) } ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) |
57 |
|
endomtr |
|- ( ( ( 2o ^m _om ) ~~ ( ( 2o ^m _om ) X. { (/) } ) /\ ( ( 2o ^m _om ) X. { (/) } ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) -> ( 2o ^m _om ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) |
58 |
45 56 57
|
mp2an |
|- ( 2o ^m _om ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) |
59 |
|
sbth |
|- ( ( ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~<_ ( 2o ^m _om ) /\ ( 2o ^m _om ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) -> ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~~ ( 2o ^m _om ) ) |
60 |
41 58 59
|
mp2an |
|- ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~~ ( 2o ^m _om ) |
61 |
10 60
|
entri |
|- ( RR X. RR ) ~~ ( 2o ^m _om ) |
62 |
61 8
|
entr4i |
|- ( RR X. RR ) ~~ RR |