Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011) (Revised by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
Assertion | rexrab | |- ( E. x e. { y e. A | ph } ch <-> E. x e. A ( ps /\ ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
2 | 1 | elrab | |- ( x e. { y e. A | ph } <-> ( x e. A /\ ps ) ) |
3 | 2 | anbi1i | |- ( ( x e. { y e. A | ph } /\ ch ) <-> ( ( x e. A /\ ps ) /\ ch ) ) |
4 | anass | |- ( ( ( x e. A /\ ps ) /\ ch ) <-> ( x e. A /\ ( ps /\ ch ) ) ) |
|
5 | 3 4 | bitri | |- ( ( x e. { y e. A | ph } /\ ch ) <-> ( x e. A /\ ( ps /\ ch ) ) ) |
6 | 5 | rexbii2 | |- ( E. x e. { y e. A | ph } ch <-> E. x e. A ( ps /\ ch ) ) |