Metamath Proof Explorer


Theorem rexrab

Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis ralab.1
|- ( y = x -> ( ph <-> ps ) )
Assertion rexrab
|- ( E. x e. { y e. A | ph } ch <-> E. x e. A ( ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 ralab.1
 |-  ( y = x -> ( ph <-> ps ) )
2 1 elrab
 |-  ( x e. { y e. A | ph } <-> ( x e. A /\ ps ) )
3 2 anbi1i
 |-  ( ( x e. { y e. A | ph } /\ ch ) <-> ( ( x e. A /\ ps ) /\ ch ) )
4 anass
 |-  ( ( ( x e. A /\ ps ) /\ ch ) <-> ( x e. A /\ ( ps /\ ch ) ) )
5 3 4 bitri
 |-  ( ( x e. { y e. A | ph } /\ ch ) <-> ( x e. A /\ ( ps /\ ch ) ) )
6 5 rexbii2
 |-  ( E. x e. { y e. A | ph } ch <-> E. x e. A ( ps /\ ch ) )