Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011) (Revised by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
| Assertion | rexrab | |- ( E. x e. { y e. A | ph } ch <-> E. x e. A ( ps /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
| 2 | 1 | elrab | |- ( x e. { y e. A | ph } <-> ( x e. A /\ ps ) ) |
| 3 | 2 | anbi1i | |- ( ( x e. { y e. A | ph } /\ ch ) <-> ( ( x e. A /\ ps ) /\ ch ) ) |
| 4 | anass | |- ( ( ( x e. A /\ ps ) /\ ch ) <-> ( x e. A /\ ( ps /\ ch ) ) ) |
|
| 5 | 3 4 | bitri | |- ( ( x e. { y e. A | ph } /\ ch ) <-> ( x e. A /\ ( ps /\ ch ) ) ) |
| 6 | 5 | rexbii2 | |- ( E. x e. { y e. A | ph } ch <-> E. x e. A ( ps /\ ch ) ) |