| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexraleqim.1 |
|- ( x = z -> ( ps <-> ph ) ) |
| 2 |
|
rexraleqim.2 |
|- ( z = Y -> ( ph <-> th ) ) |
| 3 |
|
eqeq1 |
|- ( x = z -> ( x = Y <-> z = Y ) ) |
| 4 |
1 3
|
imbi12d |
|- ( x = z -> ( ( ps -> x = Y ) <-> ( ph -> z = Y ) ) ) |
| 5 |
4
|
rspcva |
|- ( ( z e. A /\ A. x e. A ( ps -> x = Y ) ) -> ( ph -> z = Y ) ) |
| 6 |
2
|
biimpd |
|- ( z = Y -> ( ph -> th ) ) |
| 7 |
5 6
|
syli |
|- ( ( z e. A /\ A. x e. A ( ps -> x = Y ) ) -> ( ph -> th ) ) |
| 8 |
7
|
impancom |
|- ( ( z e. A /\ ph ) -> ( A. x e. A ( ps -> x = Y ) -> th ) ) |
| 9 |
8
|
rexlimiva |
|- ( E. z e. A ph -> ( A. x e. A ( ps -> x = Y ) -> th ) ) |
| 10 |
9
|
imp |
|- ( ( E. z e. A ph /\ A. x e. A ( ps -> x = Y ) ) -> th ) |