| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqidd |
|- ( ( [. A / y ]. [. A / x ]. ph /\ [. A / x ]. ph ) -> A = A ) |
| 2 |
|
nfsbc1v |
|- F/ y [. A / y ]. [. A / x ]. ph |
| 3 |
|
nfv |
|- F/ y [. A / x ]. ph |
| 4 |
2 3
|
nfan |
|- F/ y ( [. A / y ]. [. A / x ]. ph /\ [. A / x ]. ph ) |
| 5 |
|
nfv |
|- F/ y A = A |
| 6 |
4 5
|
nfim |
|- F/ y ( ( [. A / y ]. [. A / x ]. ph /\ [. A / x ]. ph ) -> A = A ) |
| 7 |
|
sbceq1a |
|- ( y = A -> ( [. A / x ]. ph <-> [. A / y ]. [. A / x ]. ph ) ) |
| 8 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
| 9 |
7 8
|
anbi12d |
|- ( y = A -> ( ( [. A / x ]. ph /\ [ y / x ] ph ) <-> ( [. A / y ]. [. A / x ]. ph /\ [. A / x ]. ph ) ) ) |
| 10 |
|
eqeq2 |
|- ( y = A -> ( A = y <-> A = A ) ) |
| 11 |
9 10
|
imbi12d |
|- ( y = A -> ( ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) <-> ( ( [. A / y ]. [. A / x ]. ph /\ [. A / x ]. ph ) -> A = A ) ) ) |
| 12 |
6 11
|
ralsngf |
|- ( A e. V -> ( A. y e. { A } ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) <-> ( ( [. A / y ]. [. A / x ]. ph /\ [. A / x ]. ph ) -> A = A ) ) ) |
| 13 |
1 12
|
mpbiri |
|- ( A e. V -> A. y e. { A } ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) ) |
| 14 |
|
nfcv |
|- F/_ x { A } |
| 15 |
|
nfsbc1v |
|- F/ x [. A / x ]. ph |
| 16 |
|
nfs1v |
|- F/ x [ y / x ] ph |
| 17 |
15 16
|
nfan |
|- F/ x ( [. A / x ]. ph /\ [ y / x ] ph ) |
| 18 |
|
nfv |
|- F/ x A = y |
| 19 |
17 18
|
nfim |
|- F/ x ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) |
| 20 |
14 19
|
nfralw |
|- F/ x A. y e. { A } ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) |
| 21 |
|
sbceq1a |
|- ( x = A -> ( ph <-> [. A / x ]. ph ) ) |
| 22 |
21
|
anbi1d |
|- ( x = A -> ( ( ph /\ [ y / x ] ph ) <-> ( [. A / x ]. ph /\ [ y / x ] ph ) ) ) |
| 23 |
|
eqeq1 |
|- ( x = A -> ( x = y <-> A = y ) ) |
| 24 |
22 23
|
imbi12d |
|- ( x = A -> ( ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) ) ) |
| 25 |
24
|
ralbidv |
|- ( x = A -> ( A. y e. { A } ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> A. y e. { A } ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) ) ) |
| 26 |
20 25
|
ralsngf |
|- ( A e. V -> ( A. x e. { A } A. y e. { A } ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> A. y e. { A } ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) ) ) |
| 27 |
13 26
|
mpbird |
|- ( A e. V -> A. x e. { A } A. y e. { A } ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
| 28 |
27
|
biantrud |
|- ( A e. V -> ( E. x e. { A } ph <-> ( E. x e. { A } ph /\ A. x e. { A } A. y e. { A } ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) ) |
| 29 |
|
reu2 |
|- ( E! x e. { A } ph <-> ( E. x e. { A } ph /\ A. x e. { A } A. y e. { A } ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
| 30 |
28 29
|
bitr4di |
|- ( A e. V -> ( E. x e. { A } ph <-> E! x e. { A } ph ) ) |