Step |
Hyp |
Ref |
Expression |
1 |
|
rexrn.1 |
|- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
2 |
|
fvexd |
|- ( ( F Fn A /\ y e. A ) -> ( F ` y ) e. _V ) |
3 |
|
fvelrnb |
|- ( F Fn A -> ( x e. ran F <-> E. y e. A ( F ` y ) = x ) ) |
4 |
|
eqcom |
|- ( ( F ` y ) = x <-> x = ( F ` y ) ) |
5 |
4
|
rexbii |
|- ( E. y e. A ( F ` y ) = x <-> E. y e. A x = ( F ` y ) ) |
6 |
3 5
|
bitrdi |
|- ( F Fn A -> ( x e. ran F <-> E. y e. A x = ( F ` y ) ) ) |
7 |
1
|
adantl |
|- ( ( F Fn A /\ x = ( F ` y ) ) -> ( ph <-> ps ) ) |
8 |
2 6 7
|
rexxfr2d |
|- ( F Fn A -> ( E. x e. ran F ph <-> E. y e. A ps ) ) |