Description: A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker rexrnmptw when possible. (Contributed by Mario Carneiro, 20-Aug-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralrnmpt.1 | |- F = ( x e. A |-> B ) |
|
ralrnmpt.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
Assertion | rexrnmpt | |- ( A. x e. A B e. V -> ( E. y e. ran F ps <-> E. x e. A ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrnmpt.1 | |- F = ( x e. A |-> B ) |
|
2 | ralrnmpt.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
3 | 2 | notbid | |- ( y = B -> ( -. ps <-> -. ch ) ) |
4 | 1 3 | ralrnmpt | |- ( A. x e. A B e. V -> ( A. y e. ran F -. ps <-> A. x e. A -. ch ) ) |
5 | 4 | notbid | |- ( A. x e. A B e. V -> ( -. A. y e. ran F -. ps <-> -. A. x e. A -. ch ) ) |
6 | dfrex2 | |- ( E. y e. ran F ps <-> -. A. y e. ran F -. ps ) |
|
7 | dfrex2 | |- ( E. x e. A ch <-> -. A. x e. A -. ch ) |
|
8 | 5 6 7 | 3bitr4g | |- ( A. x e. A B e. V -> ( E. y e. ran F ps <-> E. x e. A ch ) ) |