Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralsn.1 | |- A e. _V |
|
ralsn.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | rexsn | |- ( E. x e. { A } ph <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsn.1 | |- A e. _V |
|
2 | ralsn.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
3 | 2 | rexsng | |- ( A e. _V -> ( E. x e. { A } ph <-> ps ) ) |
4 | 1 3 | ax-mp | |- ( E. x e. { A } ph <-> ps ) |