Metamath Proof Explorer


Theorem rexsn

Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011)

Ref Expression
Hypotheses ralsn.1
|- A e. _V
ralsn.2
|- ( x = A -> ( ph <-> ps ) )
Assertion rexsn
|- ( E. x e. { A } ph <-> ps )

Proof

Step Hyp Ref Expression
1 ralsn.1
 |-  A e. _V
2 ralsn.2
 |-  ( x = A -> ( ph <-> ps ) )
3 2 rexsng
 |-  ( A e. _V -> ( E. x e. { A } ph <-> ps ) )
4 1 3 ax-mp
 |-  ( E. x e. { A } ph <-> ps )