Metamath Proof Explorer


Theorem rexsngf

Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012) (Revised by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses rexsngf.1
|- F/ x ps
rexsngf.2
|- ( x = A -> ( ph <-> ps ) )
Assertion rexsngf
|- ( A e. V -> ( E. x e. { A } ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 rexsngf.1
 |-  F/ x ps
2 rexsngf.2
 |-  ( x = A -> ( ph <-> ps ) )
3 rexsns
 |-  ( E. x e. { A } ph <-> [. A / x ]. ph )
4 1 2 sbciegf
 |-  ( A e. V -> ( [. A / x ]. ph <-> ps ) )
5 3 4 bitrid
 |-  ( A e. V -> ( E. x e. { A } ph <-> ps ) )