Metamath Proof Explorer


Theorem rexsns

Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015) (Revised by NM, 22-Aug-2018)

Ref Expression
Assertion rexsns
|- ( E. x e. { A } ph <-> [. A / x ]. ph )

Proof

Step Hyp Ref Expression
1 velsn
 |-  ( x e. { A } <-> x = A )
2 1 anbi1i
 |-  ( ( x e. { A } /\ ph ) <-> ( x = A /\ ph ) )
3 2 exbii
 |-  ( E. x ( x e. { A } /\ ph ) <-> E. x ( x = A /\ ph ) )
4 df-rex
 |-  ( E. x e. { A } ph <-> E. x ( x e. { A } /\ ph ) )
5 sbc5
 |-  ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) )
6 3 4 5 3bitr4i
 |-  ( E. x e. { A } ph <-> [. A / x ]. ph )