Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015) (Revised by NM, 22-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexsns | |- ( E. x e. { A } ph <-> [. A / x ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn | |- ( x e. { A } <-> x = A ) |
|
| 2 | 1 | anbi1i | |- ( ( x e. { A } /\ ph ) <-> ( x = A /\ ph ) ) |
| 3 | 2 | exbii | |- ( E. x ( x e. { A } /\ ph ) <-> E. x ( x = A /\ ph ) ) |
| 4 | df-rex | |- ( E. x e. { A } ph <-> E. x ( x e. { A } /\ ph ) ) |
|
| 5 | sbc5 | |- ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) |
|
| 6 | 3 4 5 | 3bitr4i | |- ( E. x e. { A } ph <-> [. A / x ]. ph ) |