Metamath Proof Explorer


Theorem rexsub

Description: Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion rexsub
|- ( ( A e. RR /\ B e. RR ) -> ( A +e -e B ) = ( A - B ) )

Proof

Step Hyp Ref Expression
1 rexneg
 |-  ( B e. RR -> -e B = -u B )
2 1 adantl
 |-  ( ( A e. RR /\ B e. RR ) -> -e B = -u B )
3 2 oveq2d
 |-  ( ( A e. RR /\ B e. RR ) -> ( A +e -e B ) = ( A +e -u B ) )
4 renegcl
 |-  ( B e. RR -> -u B e. RR )
5 rexadd
 |-  ( ( A e. RR /\ -u B e. RR ) -> ( A +e -u B ) = ( A + -u B ) )
6 4 5 sylan2
 |-  ( ( A e. RR /\ B e. RR ) -> ( A +e -u B ) = ( A + -u B ) )
7 recn
 |-  ( A e. RR -> A e. CC )
8 recn
 |-  ( B e. RR -> B e. CC )
9 negsub
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) )
10 7 8 9 syl2an
 |-  ( ( A e. RR /\ B e. RR ) -> ( A + -u B ) = ( A - B ) )
11 3 6 10 3eqtrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( A +e -e B ) = ( A - B ) )