| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexneg |
|- ( B e. RR -> -e B = -u B ) |
| 2 |
1
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> -e B = -u B ) |
| 3 |
2
|
oveq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e -e B ) = ( A +e -u B ) ) |
| 4 |
|
renegcl |
|- ( B e. RR -> -u B e. RR ) |
| 5 |
|
rexadd |
|- ( ( A e. RR /\ -u B e. RR ) -> ( A +e -u B ) = ( A + -u B ) ) |
| 6 |
4 5
|
sylan2 |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e -u B ) = ( A + -u B ) ) |
| 7 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 8 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 9 |
|
negsub |
|- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
| 10 |
7 8 9
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A + -u B ) = ( A - B ) ) |
| 11 |
3 6 10
|
3eqtrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e -e B ) = ( A - B ) ) |