Step |
Hyp |
Ref |
Expression |
1 |
|
elsuppfn |
|- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( x e. ( F supp Z ) <-> ( x e. X /\ ( F ` x ) =/= Z ) ) ) |
2 |
1
|
anbi1d |
|- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( ( x e. ( F supp Z ) /\ ph ) <-> ( ( x e. X /\ ( F ` x ) =/= Z ) /\ ph ) ) ) |
3 |
|
anass |
|- ( ( ( x e. X /\ ( F ` x ) =/= Z ) /\ ph ) <-> ( x e. X /\ ( ( F ` x ) =/= Z /\ ph ) ) ) |
4 |
2 3
|
bitrdi |
|- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( ( x e. ( F supp Z ) /\ ph ) <-> ( x e. X /\ ( ( F ` x ) =/= Z /\ ph ) ) ) ) |
5 |
4
|
rexbidv2 |
|- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( E. x e. ( F supp Z ) ph <-> E. x e. X ( ( F ` x ) =/= Z /\ ph ) ) ) |