Metamath Proof Explorer


Theorem rextp

Description: Convert an existential quantification over an unordered triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses raltp.1
|- A e. _V
raltp.2
|- B e. _V
raltp.3
|- C e. _V
raltp.4
|- ( x = A -> ( ph <-> ps ) )
raltp.5
|- ( x = B -> ( ph <-> ch ) )
raltp.6
|- ( x = C -> ( ph <-> th ) )
Assertion rextp
|- ( E. x e. { A , B , C } ph <-> ( ps \/ ch \/ th ) )

Proof

Step Hyp Ref Expression
1 raltp.1
 |-  A e. _V
2 raltp.2
 |-  B e. _V
3 raltp.3
 |-  C e. _V
4 raltp.4
 |-  ( x = A -> ( ph <-> ps ) )
5 raltp.5
 |-  ( x = B -> ( ph <-> ch ) )
6 raltp.6
 |-  ( x = C -> ( ph <-> th ) )
7 4 5 6 rextpg
 |-  ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( E. x e. { A , B , C } ph <-> ( ps \/ ch \/ th ) ) )
8 1 2 3 7 mp3an
 |-  ( E. x e. { A , B , C } ph <-> ( ps \/ ch \/ th ) )