Metamath Proof Explorer


Theorem rextru

Description: Two ways of expressing "at least one" element. (Contributed by Zhi Wang, 23-Sep-2024)

Ref Expression
Assertion rextru
|- ( E. x x e. A <-> E. x e. A T. )

Proof

Step Hyp Ref Expression
1 tru
 |-  T.
2 1 biantru
 |-  ( x e. A <-> ( x e. A /\ T. ) )
3 2 exbii
 |-  ( E. x x e. A <-> E. x ( x e. A /\ T. ) )
4 df-rex
 |-  ( E. x e. A T. <-> E. x ( x e. A /\ T. ) )
5 3 4 bitr4i
 |-  ( E. x x e. A <-> E. x e. A T. )