Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | rexv | |- ( E. x e. _V ph <-> E. x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex | |- ( E. x e. _V ph <-> E. x ( x e. _V /\ ph ) ) |
|
2 | vex | |- x e. _V |
|
3 | 2 | biantrur | |- ( ph <-> ( x e. _V /\ ph ) ) |
4 | 3 | exbii | |- ( E. x ph <-> E. x ( x e. _V /\ ph ) ) |
5 | 1 4 | bitr4i | |- ( E. x e. _V ph <-> E. x ph ) |