Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by Mario Carneiro, 20-Aug-2014) (Proof shortened by Mario Carneiro, 19-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralxfr2d.1 | |- ( ( ph /\ y e. C ) -> A e. V ) |
|
ralxfr2d.2 | |- ( ph -> ( x e. B <-> E. y e. C x = A ) ) |
||
ralxfr2d.3 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
||
Assertion | rexxfr2d | |- ( ph -> ( E. x e. B ps <-> E. y e. C ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxfr2d.1 | |- ( ( ph /\ y e. C ) -> A e. V ) |
|
2 | ralxfr2d.2 | |- ( ph -> ( x e. B <-> E. y e. C x = A ) ) |
|
3 | ralxfr2d.3 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
|
4 | 3 | notbid | |- ( ( ph /\ x = A ) -> ( -. ps <-> -. ch ) ) |
5 | 1 2 4 | ralxfr2d | |- ( ph -> ( A. x e. B -. ps <-> A. y e. C -. ch ) ) |
6 | 5 | notbid | |- ( ph -> ( -. A. x e. B -. ps <-> -. A. y e. C -. ch ) ) |
7 | dfrex2 | |- ( E. x e. B ps <-> -. A. x e. B -. ps ) |
|
8 | dfrex2 | |- ( E. y e. C ch <-> -. A. y e. C -. ch ) |
|
9 | 6 7 8 | 3bitr4g | |- ( ph -> ( E. x e. B ps <-> E. y e. C ch ) ) |