Metamath Proof Explorer


Theorem rexxp

Description: Existential quantification restricted to a Cartesian product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995) (Revised by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypothesis ralxp.1
|- ( x = <. y , z >. -> ( ph <-> ps ) )
Assertion rexxp
|- ( E. x e. ( A X. B ) ph <-> E. y e. A E. z e. B ps )

Proof

Step Hyp Ref Expression
1 ralxp.1
 |-  ( x = <. y , z >. -> ( ph <-> ps ) )
2 iunxpconst
 |-  U_ y e. A ( { y } X. B ) = ( A X. B )
3 2 rexeqi
 |-  ( E. x e. U_ y e. A ( { y } X. B ) ph <-> E. x e. ( A X. B ) ph )
4 1 rexiunxp
 |-  ( E. x e. U_ y e. A ( { y } X. B ) ph <-> E. y e. A E. z e. B ps )
5 3 4 bitr3i
 |-  ( E. x e. ( A X. B ) ph <-> E. y e. A E. z e. B ps )