Description: Existential quantification restricted to a Cartesian product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995) (Revised by Mario Carneiro, 14-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralxp.1 | |- ( x = <. y , z >. -> ( ph <-> ps ) ) |
|
| Assertion | rexxp | |- ( E. x e. ( A X. B ) ph <-> E. y e. A E. z e. B ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxp.1 | |- ( x = <. y , z >. -> ( ph <-> ps ) ) |
|
| 2 | iunxpconst | |- U_ y e. A ( { y } X. B ) = ( A X. B ) |
|
| 3 | 2 | rexeqi | |- ( E. x e. U_ y e. A ( { y } X. B ) ph <-> E. x e. ( A X. B ) ph ) |
| 4 | 1 | rexiunxp | |- ( E. x e. U_ y e. A ( { y } X. B ) ph <-> E. y e. A E. z e. B ps ) |
| 5 | 3 4 | bitr3i | |- ( E. x e. ( A X. B ) ph <-> E. y e. A E. z e. B ps ) |