Metamath Proof Explorer


Theorem rfcnpre2

Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real B , is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses rfcnpre2.1
|- F/_ x B
rfcnpre2.2
|- F/_ x F
rfcnpre2.3
|- F/ x ph
rfcnpre2.4
|- K = ( topGen ` ran (,) )
rfcnpre2.5
|- X = U. J
rfcnpre2.6
|- A = { x e. X | ( F ` x ) < B }
rfcnpre2.7
|- ( ph -> B e. RR* )
rfcnpre2.8
|- ( ph -> F e. ( J Cn K ) )
Assertion rfcnpre2
|- ( ph -> A e. J )

Proof

Step Hyp Ref Expression
1 rfcnpre2.1
 |-  F/_ x B
2 rfcnpre2.2
 |-  F/_ x F
3 rfcnpre2.3
 |-  F/ x ph
4 rfcnpre2.4
 |-  K = ( topGen ` ran (,) )
5 rfcnpre2.5
 |-  X = U. J
6 rfcnpre2.6
 |-  A = { x e. X | ( F ` x ) < B }
7 rfcnpre2.7
 |-  ( ph -> B e. RR* )
8 rfcnpre2.8
 |-  ( ph -> F e. ( J Cn K ) )
9 2 nfcnv
 |-  F/_ x `' F
10 nfcv
 |-  F/_ x -oo
11 nfcv
 |-  F/_ x (,)
12 10 11 1 nfov
 |-  F/_ x ( -oo (,) B )
13 9 12 nfima
 |-  F/_ x ( `' F " ( -oo (,) B ) )
14 nfrab1
 |-  F/_ x { x e. X | ( F ` x ) < B }
15 eqid
 |-  ( J Cn K ) = ( J Cn K )
16 4 5 15 8 fcnre
 |-  ( ph -> F : X --> RR )
17 16 ffvelrnda
 |-  ( ( ph /\ x e. X ) -> ( F ` x ) e. RR )
18 elioomnf
 |-  ( B e. RR* -> ( ( F ` x ) e. ( -oo (,) B ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < B ) ) )
19 7 18 syl
 |-  ( ph -> ( ( F ` x ) e. ( -oo (,) B ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < B ) ) )
20 19 baibd
 |-  ( ( ph /\ ( F ` x ) e. RR ) -> ( ( F ` x ) e. ( -oo (,) B ) <-> ( F ` x ) < B ) )
21 17 20 syldan
 |-  ( ( ph /\ x e. X ) -> ( ( F ` x ) e. ( -oo (,) B ) <-> ( F ` x ) < B ) )
22 21 pm5.32da
 |-  ( ph -> ( ( x e. X /\ ( F ` x ) e. ( -oo (,) B ) ) <-> ( x e. X /\ ( F ` x ) < B ) ) )
23 ffn
 |-  ( F : X --> RR -> F Fn X )
24 elpreima
 |-  ( F Fn X -> ( x e. ( `' F " ( -oo (,) B ) ) <-> ( x e. X /\ ( F ` x ) e. ( -oo (,) B ) ) ) )
25 16 23 24 3syl
 |-  ( ph -> ( x e. ( `' F " ( -oo (,) B ) ) <-> ( x e. X /\ ( F ` x ) e. ( -oo (,) B ) ) ) )
26 rabid
 |-  ( x e. { x e. X | ( F ` x ) < B } <-> ( x e. X /\ ( F ` x ) < B ) )
27 26 a1i
 |-  ( ph -> ( x e. { x e. X | ( F ` x ) < B } <-> ( x e. X /\ ( F ` x ) < B ) ) )
28 22 25 27 3bitr4d
 |-  ( ph -> ( x e. ( `' F " ( -oo (,) B ) ) <-> x e. { x e. X | ( F ` x ) < B } ) )
29 3 13 14 28 eqrd
 |-  ( ph -> ( `' F " ( -oo (,) B ) ) = { x e. X | ( F ` x ) < B } )
30 29 6 eqtr4di
 |-  ( ph -> ( `' F " ( -oo (,) B ) ) = A )
31 iooretop
 |-  ( -oo (,) B ) e. ( topGen ` ran (,) )
32 31 a1i
 |-  ( ph -> ( -oo (,) B ) e. ( topGen ` ran (,) ) )
33 32 4 eleqtrrdi
 |-  ( ph -> ( -oo (,) B ) e. K )
34 cnima
 |-  ( ( F e. ( J Cn K ) /\ ( -oo (,) B ) e. K ) -> ( `' F " ( -oo (,) B ) ) e. J )
35 8 33 34 syl2anc
 |-  ( ph -> ( `' F " ( -oo (,) B ) ) e. J )
36 30 35 eqeltrrd
 |-  ( ph -> A e. J )