Step |
Hyp |
Ref |
Expression |
1 |
|
rfcnpre4.1 |
|- F/_ t F |
2 |
|
rfcnpre4.2 |
|- K = ( topGen ` ran (,) ) |
3 |
|
rfcnpre4.3 |
|- T = U. J |
4 |
|
rfcnpre4.4 |
|- A = { t e. T | ( F ` t ) <_ B } |
5 |
|
rfcnpre4.5 |
|- ( ph -> B e. RR ) |
6 |
|
rfcnpre4.6 |
|- ( ph -> F e. ( J Cn K ) ) |
7 |
|
eqid |
|- ( J Cn K ) = ( J Cn K ) |
8 |
2 3 7 6
|
fcnre |
|- ( ph -> F : T --> RR ) |
9 |
|
ffn |
|- ( F : T --> RR -> F Fn T ) |
10 |
|
elpreima |
|- ( F Fn T -> ( s e. ( `' F " ( -oo (,] B ) ) <-> ( s e. T /\ ( F ` s ) e. ( -oo (,] B ) ) ) ) |
11 |
8 9 10
|
3syl |
|- ( ph -> ( s e. ( `' F " ( -oo (,] B ) ) <-> ( s e. T /\ ( F ` s ) e. ( -oo (,] B ) ) ) ) |
12 |
|
mnfxr |
|- -oo e. RR* |
13 |
5
|
rexrd |
|- ( ph -> B e. RR* ) |
14 |
13
|
adantr |
|- ( ( ph /\ s e. T ) -> B e. RR* ) |
15 |
|
elioc1 |
|- ( ( -oo e. RR* /\ B e. RR* ) -> ( ( F ` s ) e. ( -oo (,] B ) <-> ( ( F ` s ) e. RR* /\ -oo < ( F ` s ) /\ ( F ` s ) <_ B ) ) ) |
16 |
12 14 15
|
sylancr |
|- ( ( ph /\ s e. T ) -> ( ( F ` s ) e. ( -oo (,] B ) <-> ( ( F ` s ) e. RR* /\ -oo < ( F ` s ) /\ ( F ` s ) <_ B ) ) ) |
17 |
|
simpr3 |
|- ( ( ( ph /\ s e. T ) /\ ( ( F ` s ) e. RR* /\ -oo < ( F ` s ) /\ ( F ` s ) <_ B ) ) -> ( F ` s ) <_ B ) |
18 |
8
|
ffvelrnda |
|- ( ( ph /\ s e. T ) -> ( F ` s ) e. RR ) |
19 |
18
|
rexrd |
|- ( ( ph /\ s e. T ) -> ( F ` s ) e. RR* ) |
20 |
19
|
adantr |
|- ( ( ( ph /\ s e. T ) /\ ( F ` s ) <_ B ) -> ( F ` s ) e. RR* ) |
21 |
18
|
adantr |
|- ( ( ( ph /\ s e. T ) /\ ( F ` s ) <_ B ) -> ( F ` s ) e. RR ) |
22 |
|
mnflt |
|- ( ( F ` s ) e. RR -> -oo < ( F ` s ) ) |
23 |
21 22
|
syl |
|- ( ( ( ph /\ s e. T ) /\ ( F ` s ) <_ B ) -> -oo < ( F ` s ) ) |
24 |
|
simpr |
|- ( ( ( ph /\ s e. T ) /\ ( F ` s ) <_ B ) -> ( F ` s ) <_ B ) |
25 |
20 23 24
|
3jca |
|- ( ( ( ph /\ s e. T ) /\ ( F ` s ) <_ B ) -> ( ( F ` s ) e. RR* /\ -oo < ( F ` s ) /\ ( F ` s ) <_ B ) ) |
26 |
17 25
|
impbida |
|- ( ( ph /\ s e. T ) -> ( ( ( F ` s ) e. RR* /\ -oo < ( F ` s ) /\ ( F ` s ) <_ B ) <-> ( F ` s ) <_ B ) ) |
27 |
16 26
|
bitrd |
|- ( ( ph /\ s e. T ) -> ( ( F ` s ) e. ( -oo (,] B ) <-> ( F ` s ) <_ B ) ) |
28 |
27
|
pm5.32da |
|- ( ph -> ( ( s e. T /\ ( F ` s ) e. ( -oo (,] B ) ) <-> ( s e. T /\ ( F ` s ) <_ B ) ) ) |
29 |
11 28
|
bitrd |
|- ( ph -> ( s e. ( `' F " ( -oo (,] B ) ) <-> ( s e. T /\ ( F ` s ) <_ B ) ) ) |
30 |
|
nfcv |
|- F/_ t s |
31 |
|
nfcv |
|- F/_ t T |
32 |
1 30
|
nffv |
|- F/_ t ( F ` s ) |
33 |
|
nfcv |
|- F/_ t <_ |
34 |
|
nfcv |
|- F/_ t B |
35 |
32 33 34
|
nfbr |
|- F/ t ( F ` s ) <_ B |
36 |
|
fveq2 |
|- ( t = s -> ( F ` t ) = ( F ` s ) ) |
37 |
36
|
breq1d |
|- ( t = s -> ( ( F ` t ) <_ B <-> ( F ` s ) <_ B ) ) |
38 |
30 31 35 37
|
elrabf |
|- ( s e. { t e. T | ( F ` t ) <_ B } <-> ( s e. T /\ ( F ` s ) <_ B ) ) |
39 |
29 38
|
bitr4di |
|- ( ph -> ( s e. ( `' F " ( -oo (,] B ) ) <-> s e. { t e. T | ( F ` t ) <_ B } ) ) |
40 |
39
|
eqrdv |
|- ( ph -> ( `' F " ( -oo (,] B ) ) = { t e. T | ( F ` t ) <_ B } ) |
41 |
40 4
|
eqtr4di |
|- ( ph -> ( `' F " ( -oo (,] B ) ) = A ) |
42 |
|
iocmnfcld |
|- ( B e. RR -> ( -oo (,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
43 |
5 42
|
syl |
|- ( ph -> ( -oo (,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
44 |
2
|
fveq2i |
|- ( Clsd ` K ) = ( Clsd ` ( topGen ` ran (,) ) ) |
45 |
43 44
|
eleqtrrdi |
|- ( ph -> ( -oo (,] B ) e. ( Clsd ` K ) ) |
46 |
|
cnclima |
|- ( ( F e. ( J Cn K ) /\ ( -oo (,] B ) e. ( Clsd ` K ) ) -> ( `' F " ( -oo (,] B ) ) e. ( Clsd ` J ) ) |
47 |
6 45 46
|
syl2anc |
|- ( ph -> ( `' F " ( -oo (,] B ) ) e. ( Clsd ` J ) ) |
48 |
41 47
|
eqeltrrd |
|- ( ph -> A e. ( Clsd ` J ) ) |