Step |
Hyp |
Ref |
Expression |
1 |
|
cnring |
|- CCfld e. Ring |
2 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
3 |
1 2
|
ax-mp |
|- CCfld e. CMnd |
4 |
|
rege0subm |
|- ( 0 [,) +oo ) e. ( SubMnd ` CCfld ) |
5 |
|
eqid |
|- ( CCfld |`s ( 0 [,) +oo ) ) = ( CCfld |`s ( 0 [,) +oo ) ) |
6 |
5
|
submcmn |
|- ( ( CCfld e. CMnd /\ ( 0 [,) +oo ) e. ( SubMnd ` CCfld ) ) -> ( CCfld |`s ( 0 [,) +oo ) ) e. CMnd ) |
7 |
3 4 6
|
mp2an |
|- ( CCfld |`s ( 0 [,) +oo ) ) e. CMnd |
8 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
9 |
|
ax-resscn |
|- RR C_ CC |
10 |
8 9
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
11 |
|
1re |
|- 1 e. RR |
12 |
|
0le1 |
|- 0 <_ 1 |
13 |
|
ltpnf |
|- ( 1 e. RR -> 1 < +oo ) |
14 |
11 13
|
ax-mp |
|- 1 < +oo |
15 |
|
0re |
|- 0 e. RR |
16 |
|
pnfxr |
|- +oo e. RR* |
17 |
|
elico2 |
|- ( ( 0 e. RR /\ +oo e. RR* ) -> ( 1 e. ( 0 [,) +oo ) <-> ( 1 e. RR /\ 0 <_ 1 /\ 1 < +oo ) ) ) |
18 |
15 16 17
|
mp2an |
|- ( 1 e. ( 0 [,) +oo ) <-> ( 1 e. RR /\ 0 <_ 1 /\ 1 < +oo ) ) |
19 |
11 12 14 18
|
mpbir3an |
|- 1 e. ( 0 [,) +oo ) |
20 |
|
ge0mulcl |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
21 |
20
|
rgen2 |
|- A. x e. ( 0 [,) +oo ) A. y e. ( 0 [,) +oo ) ( x x. y ) e. ( 0 [,) +oo ) |
22 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
23 |
22
|
ringmgp |
|- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
24 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
25 |
22 24
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
26 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
27 |
22 26
|
ringidval |
|- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
28 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
29 |
22 28
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
30 |
25 27 29
|
issubm |
|- ( ( mulGrp ` CCfld ) e. Mnd -> ( ( 0 [,) +oo ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) <-> ( ( 0 [,) +oo ) C_ CC /\ 1 e. ( 0 [,) +oo ) /\ A. x e. ( 0 [,) +oo ) A. y e. ( 0 [,) +oo ) ( x x. y ) e. ( 0 [,) +oo ) ) ) ) |
31 |
1 23 30
|
mp2b |
|- ( ( 0 [,) +oo ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) <-> ( ( 0 [,) +oo ) C_ CC /\ 1 e. ( 0 [,) +oo ) /\ A. x e. ( 0 [,) +oo ) A. y e. ( 0 [,) +oo ) ( x x. y ) e. ( 0 [,) +oo ) ) ) |
32 |
10 19 21 31
|
mpbir3an |
|- ( 0 [,) +oo ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) |
33 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) = ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) |
34 |
33
|
submmnd |
|- ( ( 0 [,) +oo ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) -> ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) e. Mnd ) |
35 |
32 34
|
ax-mp |
|- ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) e. Mnd |
36 |
|
simpll |
|- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> x e. ( 0 [,) +oo ) ) |
37 |
10 36
|
sselid |
|- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> x e. CC ) |
38 |
|
simplr |
|- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> y e. ( 0 [,) +oo ) ) |
39 |
10 38
|
sselid |
|- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> y e. CC ) |
40 |
|
simpr |
|- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> z e. ( 0 [,) +oo ) ) |
41 |
10 40
|
sselid |
|- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> z e. CC ) |
42 |
37 39 41
|
adddid |
|- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
43 |
37 39 41
|
adddird |
|- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
44 |
42 43
|
jca |
|- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) ) |
45 |
44
|
ralrimiva |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> A. z e. ( 0 [,) +oo ) ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) ) |
46 |
45
|
ralrimiva |
|- ( x e. ( 0 [,) +oo ) -> A. y e. ( 0 [,) +oo ) A. z e. ( 0 [,) +oo ) ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) ) |
47 |
10
|
sseli |
|- ( x e. ( 0 [,) +oo ) -> x e. CC ) |
48 |
47
|
mul02d |
|- ( x e. ( 0 [,) +oo ) -> ( 0 x. x ) = 0 ) |
49 |
47
|
mul01d |
|- ( x e. ( 0 [,) +oo ) -> ( x x. 0 ) = 0 ) |
50 |
46 48 49
|
jca32 |
|- ( x e. ( 0 [,) +oo ) -> ( A. y e. ( 0 [,) +oo ) A. z e. ( 0 [,) +oo ) ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) /\ ( ( 0 x. x ) = 0 /\ ( x x. 0 ) = 0 ) ) ) |
51 |
50
|
rgen |
|- A. x e. ( 0 [,) +oo ) ( A. y e. ( 0 [,) +oo ) A. z e. ( 0 [,) +oo ) ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) /\ ( ( 0 x. x ) = 0 /\ ( x x. 0 ) = 0 ) ) |
52 |
5 24
|
ressbas2 |
|- ( ( 0 [,) +oo ) C_ CC -> ( 0 [,) +oo ) = ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
53 |
10 52
|
ax-mp |
|- ( 0 [,) +oo ) = ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
54 |
|
cnfldex |
|- CCfld e. _V |
55 |
|
ovex |
|- ( 0 [,) +oo ) e. _V |
56 |
5 22
|
mgpress |
|- ( ( CCfld e. _V /\ ( 0 [,) +oo ) e. _V ) -> ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) = ( mulGrp ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
57 |
54 55 56
|
mp2an |
|- ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) = ( mulGrp ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
58 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
59 |
5 58
|
ressplusg |
|- ( ( 0 [,) +oo ) e. _V -> + = ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
60 |
55 59
|
ax-mp |
|- + = ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
61 |
5 28
|
ressmulr |
|- ( ( 0 [,) +oo ) e. _V -> x. = ( .r ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
62 |
55 61
|
ax-mp |
|- x. = ( .r ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
63 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
64 |
1 63
|
ax-mp |
|- CCfld e. Mnd |
65 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
66 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
67 |
5 24 66
|
ress0g |
|- ( ( CCfld e. Mnd /\ 0 e. ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ CC ) -> 0 = ( 0g ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
68 |
64 65 10 67
|
mp3an |
|- 0 = ( 0g ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
69 |
53 57 60 62 68
|
issrg |
|- ( ( CCfld |`s ( 0 [,) +oo ) ) e. SRing <-> ( ( CCfld |`s ( 0 [,) +oo ) ) e. CMnd /\ ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) e. Mnd /\ A. x e. ( 0 [,) +oo ) ( A. y e. ( 0 [,) +oo ) A. z e. ( 0 [,) +oo ) ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) /\ ( ( 0 x. x ) = 0 /\ ( x x. 0 ) = 0 ) ) ) ) |
70 |
7 35 51 69
|
mpbir3an |
|- ( CCfld |`s ( 0 [,) +oo ) ) e. SRing |