Metamath Proof Explorer


Theorem rge0ssre

Description: Nonnegative real numbers are real numbers. (Contributed by Thierry Arnoux, 9-Sep-2018) (Proof shortened by AV, 8-Sep-2019)

Ref Expression
Assertion rge0ssre
|- ( 0 [,) +oo ) C_ RR

Proof

Step Hyp Ref Expression
1 elrege0
 |-  ( x e. ( 0 [,) +oo ) <-> ( x e. RR /\ 0 <_ x ) )
2 1 simplbi
 |-  ( x e. ( 0 [,) +oo ) -> x e. RR )
3 2 ssriv
 |-  ( 0 [,) +oo ) C_ RR