Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rgen2.1 | |- ( ( x e. A /\ y e. B ) -> ph ) |
|
Assertion | rgen2 | |- A. x e. A A. y e. B ph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | |- ( ( x e. A /\ y e. B ) -> ph ) |
|
2 | 1 | ralrimiva | |- ( x e. A -> A. y e. B ph ) |
3 | 2 | rgen | |- A. x e. A A. y e. B ph |