Metamath Proof Explorer


Theorem rgen2

Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999)

Ref Expression
Hypothesis rgen2.1
|- ( ( x e. A /\ y e. B ) -> ph )
Assertion rgen2
|- A. x e. A A. y e. B ph

Proof

Step Hyp Ref Expression
1 rgen2.1
 |-  ( ( x e. A /\ y e. B ) -> ph )
2 1 ralrimiva
 |-  ( x e. A -> A. y e. B ph )
3 2 rgen
 |-  A. x e. A A. y e. B ph